

Feb 19-8:47 AM

$$
\begin{aligned}
& \text { 1) find } \int\left(\sec ^{2} x-\csc ^{2} x\right) d x \\
& \underset{\substack{\text { Indefinite } \\
\text { Integral }}}{\substack{\text { d } \\
\text { d }}}+C \\
& =\int \sec ^{2} x d x-\int \operatorname{scc}^{2} x d x \\
& \frac{d}{d x}[\tan x]=\sec ^{2} x \\
& =\tan x-(-\cot x)+C \\
& =\tan x+\cot x+c \quad \frac{d}{d x}[\cot x]=-\csc ^{2} x \\
& \text { 2) Evaluate } \int_{2}^{4}\left(3 x^{2}+6 x\right) d x \quad \text { Definite } \quad \text { integral } \rightarrow N_{C} \\
& =\left.\left(\frac{x}{3} \frac{x^{3}}{x^{3}}+\frac{6}{x} \frac{x^{2}}{x}\right)\right|_{2} ^{4} \\
& \begin{aligned}
=\left.\left(x^{3}+3 x^{2}\right)\right|_{2} ^{4}= & {\left[\begin{array}{c}
3 \\
4^{3}+3(4)
\end{array}\right]-\left[2^{3}+3(2)^{2}\right] } \\
& =112-20=92]
\end{aligned}
\end{aligned}
$$

Evaluate

$$
\begin{aligned}
& \int_{0}^{1} \frac{(2 x+3)(x-3) d x}{f 0 i l \dot{\varepsilon} \operatorname{simplify}} \\
& =\int_{0}^{1}\left(2 x^{2}-3 x-9\right) d x \\
& =\left.\left[2 \frac{x^{3}}{3}-\frac{3 x^{2}}{2}-9 x\right]\right|_{0} ^{1} \\
& =\left(\frac{2 \cdot 1^{3}}{3}-\frac{3 \cdot 1^{2}}{2}-9(1)\right)-\left(\frac{2 \cdot 0^{3}}{3}-\frac{3 \cdot 0^{2}}{2}-9(0)\right) \\
& =\frac{2}{3}-\frac{3}{2}-9=-\frac{59}{6}
\end{aligned}
$$

\qquad

Nov 21-10:33 AM

find the area below $f(x)=3 x^{2}+5$, above x-axis
\qquad $工$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
A=\int_{-2}^{2}\left(3 x^{2}+5\right) d x=-2 \int_{0}^{2}\left(3 x^{2}+5\right) d x=2 \cdot 18=36
$$

\qquad
\qquad
\qquad

$$
=\left.\left(x^{3}+5 x\right)\right|_{-2} ^{2}=\left(e^{3}+5(2)\right)-\left((-2)^{3}+5(-2)\right)
$$

\qquad
\qquad

$$
\begin{aligned}
=18-(-18) & =18+18 \\
& =36
\end{aligned}
$$

\qquad

Nov 21-10:42 AM

If $f(x) \geq g(x)$ over $[a, b]$, both cont. $\dot{\varepsilon}$ diff.
then area between them is

$$
A=\int_{a}^{b}[f(x)-g(x)] d x
$$

find the area between $f(x)=4-x^{2}$ and $\begin{aligned} & \text { Horizatise } \\ & \text { lime } \\ & =3\end{aligned}$.

$A=\int_{-1}^{1}($ Top - Bottom $) d x=\int_{-1}^{1}\left(4-x^{2}-3\right) d x$
$=\int_{-1}^{1}(\underbrace{\left(1-x^{2}\right) d x}_{\begin{array}{c}\text { even } \\ \text { Function }\end{array}}=\left.2\left[x-\frac{x^{3}}{3}\right]\right|_{0} ^{1}\left(1-x^{2}\right) d x$

$$
=2\left[\left(1-\frac{x^{3}}{3}\right)^{2 / 3}-\left(0-\frac{0}{3}\right)\right]^{00}
$$

$$
=2 \cdot \frac{2}{3}=\frac{4}{3}
$$

$$
\begin{aligned}
& \text { from } x=-2 \quad T_{0} \quad x=2 . \quad S(-x)=3(-x)^{2}+5=3 x^{2}+5=5(x)
\end{aligned}
$$

$$
\begin{aligned}
& \text { even Function }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Find the area enclosed by } f(x)=\operatorname{Sin} x \text { and } \\
& g(x)=\cos x \quad \text { from } x=0 \text { to } x=\frac{\pi}{4} \text {. } \\
& A=\int_{0}^{\pi / 4}[\text { Top - Bottom }] d x=\quad \begin{array}{ll}
\tan x=1 \\
x=\pi / 4
\end{array} \\
& =\int_{0}^{\pi / 4}[\cos x-\sin x] d x=\quad \frac{d}{d x}[\sin x]=\cos x \\
& \begin{array}{l}
=\left.(\sin x+\cos x)\right|_{0} ^{\pi / 4} \quad \frac{d}{d x}[\cos x]=\sin x \\
=\left(\sin \frac{\frac{\pi}{4}}{4}+\cos \frac{\sqrt{2}}{4}\right)^{2}-(\sin 0+\cos 0)^{1}
\end{array} \\
& =\begin{array}{ll}
\sqrt{2} & -1
\end{array}
\end{aligned}
$$

Nov 21-10:56 AM

$$
\begin{aligned}
& \text { Integration by Substitution Method } \\
& \int(2 x+3)^{4} d x \\
& \text { Let } u=2 x+3 \\
& =\int u^{4} \cdot \frac{d u}{2} \\
& \frac{d u}{d x}=2 \rightarrow d u=2 d x \\
& \frac{d u}{2}=d x \\
& =\int \frac{1}{2} u^{4} d u=\frac{1}{2} \cdot \frac{u^{5}}{5}+C \\
& \square=\frac{1}{10}(2 x+3)^{5}+C \\
& \text { check: } \\
& \frac{d}{d x}\left[\frac{1}{10}(2 x+3)^{5}+c\right]=\frac{1}{10} \cdot \not 8(2 x+3)^{4} \cdot \not 2+0 \\
& =(2 x+3)^{4}
\end{aligned}
$$

Nov 21-11:10 AM

$$
\left.\begin{array}{l}
\begin{array}{rl}
\int(2 x-1)\left(x^{2}-x+10\right)^{5} d x \\
\text { Let } u= & x^{2}-x+10 \\
d u=(2 x-1) d x
\end{array} \\
=\int u^{5} d u=\frac{u^{6}}{6}+c \quad \\
=\frac{1}{6}\left(x^{2}-x+10\right)^{6}+c
\end{array}\right\} \begin{aligned}
& \text { check: } \\
& \frac{d}{d x}\left[\frac{1}{6}\left(x^{2}-x+10\right)^{6}+c\right]=\frac{1}{6} \cdot 6\left(x^{2}-x+10\right)^{5} \cdot(2 x-1)+0 \\
&=(2 x-1)\left(x^{2}-x+10\right)^{5}
\end{aligned}
$$

Nov 21-11:21 AM

